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Summary. Classes of coronoids (or degenerate coronoids), r and q are obtained by providing the 
rectangle-shaped benzenoids R j (m, 3) with a naphthalenic or pyrenic hole, respectively. The numbers 
of Kekul6 structures (K) are studied. It was found for the K numbers of the classes in question: 
r = 4/5 R and q = 1/5 R. The classes r' and q' are similar to r and q, respectively, but the naphthalenic 
or pyrenic hole is oriented in a different way. For these classes it was found: r' = 3/5 R, q' = 2/5 R. 
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Die Anzahl von Kekul6-Strukturen fiir hochkondensierte Benzenoide mit reehteckigem UmriB, 8. Mitt.: 
Einige perforierte benzenoide Reehteek-Strukturen 

Zusammenfassung. Es werden Klassen r und q von Coronoiden (oder degenerierten Coronoiden) 
erhalten, wobei Benzenoide mit rechteckigem Umril3, R j (m, 3), mit einem Naphthalin- oder Pyren- 
Loch versehen werden. Die Anzahl von Kekul&Strukturen (K) wird untersucht; dabei wurde ffir die 
untersuchten Klassen r = 4/5 R und q = 1/5 R gefunden. Die Klassen r' und q' verhalten sich/ihnlich, 
das Naphthalin- oder Pyren-Loch ist jedoch anders orientiert; daffir wurde r' = 3/5 R und q' = 
2/5 R gefunden. 

Introduction 

A benzenoid [1, 2] is a planar system of  congruent regular hexagons. The benzenoid 
systems have obvious chemical counterparts in benzenoids hydrocarbons. The 
Kekul~ structures of  such systems and especially their numbers (or Kekul6 structure 
counts, K), have been studied intensively. Reference is made to a series of  papers 
of  this Journal [3-10] and to the monograph of  Cyvin and Gutman  E2] with the 
bibliography therein. 

Much less work on the Kekul6 structures of  coronoid systems [11] is available. 
A coronoid is, loosely speaking, a benzenoid with a hole. The size of  the hole, 
which is referred to as the corona hole, should not  be smaller than two hexagons. 
Also coronoids have obvious counterparts in conjugated hydrocarbons. The most 
famous example is C48H24 kekulene [12, 13]. Most of  the combinatorial K formulas 
for coronoids pertain to classes ofcatacondensed systems (i.e. those without internal 
vertices). Otherwise some K formulas for classes of  half  essentially disconnected 
coronoids [14] have been published [15, 16]; the members of  these classes are 
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characterized by having only single isolated internal vertices. For classes of regular 
pericondensed coronoids only two K formulas have been published so far [-15, 17], 
both of them pertaining to systems of the regular hexagonal symmetry. 

The aim of the present work was to increase our knowledge of Kekul6 structures 
for pericondensed coronoids. Pericondensed systems are those which possess in- 
ternal vertices. Many classes of pericondensed benzenoids have been studied with 
respect to their Kekul6 structure counts, and especially the classes of oblate rect- 
angles, R j (m, n). Most of the findings are summarized in Chapter 12 of the above- 
mentioned monograph [2]. In the present work we concentrated on the oblate 
rectangles [2, 18-20] with n = 3, provided with a naphthalenic (2-hexagon) hole 
in one of the four-hexagon rows. Some surprising features were detected during 
these studies. 

Fig. 1 shows the coronoid systems obtained by perforating the seven-tier oblate 
rectangle R j (4, 3) with a naphthalenic hole in different positions. It was observed 
that the position of the corona hole is immaterial for the Kekul6 structure count. 
Of course the left- and right-hand systems of Fig. 1 are isomorphic (identical), but 
the identical K number is not at all trivial for the middle system. The actual K 
number, viz. 6800 was found to be 4/5 of the Kekul6 structure count for the 
(compact) rectangle, viz. K{R j (4, 3)} = 8500. 

The naphthalenic holes may be extended to pyrenic (4-hexagon) holes as shown 
in Fig. 2. Again we find the same K number for the coronoid (or degenerate 
coronoid) systems. In the present example it is 1700 or 1/5 of K{R j (4, 3)}. 

( 

( 

r (1 ,3 )  

K = 6 8 0 0  

r(2,2) 

K = 6800  

r(3,1) 

K = 6800 

Fig. 1. Members of the class r of coronoids (the left and right system are isomorphic); Kekul6 structure 
counts (K) are indicated 

q(1,3)  

K = 1700  

q ( 2 , 2 )  

Z = 1700  

q(3,1)  

K = 1700  

Fig. 2. Members of the class q (coronoid in the middle, isomorphic degenerate coronoids at left and 
right); Kekul6 structure counts (K) are indicated 
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K = 168 K : 161 

835 

K = 728 K = 616 

Fig. 3. Two pairs of coronoid systems; 
K numbers are given 

It seems not  to be a trivial mat ter  to generalize the observed features. They 
were unexpected inasmuch as it is not  difficult to find examples of  coronoids  where 
the posi t ion of  the hole does mat ter  for the K number.  Fig. 3 shows two examples. 

Results and Discussion 

Definitions of  Coronoid Classes 

In Fig. 4 the two main coronoid  classes under  consideration, r and q, are defined. 
The parameters  s and t should have positive integer values, The members  of  r are 
coronoids  for all s, t >~ 1, while q are coronoids  for s, t ~> 2. We shall also allow 
for the degenerate coronoid  systems q when s = 1 or t = 1, viz. q(1, t) and q(s, 1); 
cf. Fig. 2. 

r ( s , t )  q(s,t) 

Fig. 4. Definition of the classes r and q 
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We introduce the following abbreviations for the Kekul~ structure counts of 
the members from r and q, 

K{r(s, t)}  = r(s,t), (1) 

K{q(s,  t)} = q(s, t). (2) 

It is clear that r (t, s) is isomorphic with r (s, t), and also that q (t, s) and q (s, t) 
are isomorphic; see Figs. 1 and 2 for examples. Therefore 

r (t, s) = r (s, t), q (t, s) = q (s, t). (3) 

The compact oblate rectangle corresponding to r or q when the hole is filled 
up, is R j (m, n), where m = s + t and n = 3. Adhering to the previous notation 
[2, 21] we write its Kekul6 structure count 

K{I~(s  + t, 3)} = R3(s + t). (4) 

Introductory Examples 

Ovalene (see Fig. 5) is a hexagon-shaped benzenoid [7], but may as well be inter- 
preted as an oblate rectangle with m = 2 and n = 3. Its K number is known to be 
R3 (2) = 50. In consistence with the information in Fig. 5 we have 

R3(2) = r(1, 1) + q(1, 1), (5) 

where 

4 1 
r(1, 1) = ~R3 (2), q(1, 1) = ~R3 (2). (6) 

This result is easily obtained by the method of fragmentation, which was formulated 
by Randi6 1-22]. It was employed throughout  the present work. In order to derive 
the results of Fig. 5 the middle bond of ovalene is attacked, assuming that it is 
single or double, successively. 

An even simpler example of systems with Knumbers  in the ratio 5 : 4 : 1 (actually 
equal to 5, 4 and 1) is furnished by Fig. 6. Here the method of fragmentation was 

RJ (2,3) r(l ,l) q(l ,l) 

I< = 50  K = 40  I< = I 0  

Fig. 5. Three systems with K numbers in the ratio 5 : 4 : 1 

RJ(l,3) 

U2:223 
K=5 K=4 

Fig. 6. Three systems with K numbers 5, 4 and 1 

K = l  
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applied to naphthacene,  which is the degenerate oblate rectangle for m = 1 (and 
n = 3). In this case, however, the two fragments can not  be identified with members  
of  the classes r and q because s + t = 1 has no solution with s, t f> 1. 

The Main Result 

Theorem. 
4 1 

r (s, t) = ~ R3 (s + t), q (s, t) = ~ R3 (s + t). (7) 

Here it is implied that  the K numbers  of  r and q systems only depend on the sum 
s + t, not  the individual values of  s and t. That  means,  in other words, that  the 
hole can be placed in the middle of  an arbitrary four-membered row of  the rectangle. 

It is sufficient to prove one of  the equations in (7), since one has 

R3 (s + t) = r (s, t) + q (s, t). (8) 

This relation is easily deduced by the method  of  f ragmentat ion as exemplified in 
Fig. 5. 

The Case o f  s = 1 

Let the me thod  of  f ragmentat ion be applied to q (1, t) as shown in Fig. 7; the thick 
arrows indicate the edges to be at tacked and assigned to double and single bonds.  
Thus  the system is broken down to known fragments:  L(1) is benzene, while 
B (3, 2 t - 2, 1) and B (3, 2 t - 2, - 1) are members  of  the well studied and exploited 
auxiliary benzenoid classes associated with rectangles [2, 10, 19-21, 23-26]. In 
analytical form the result of  this f ragmentat ion scheme is 

q (1, t) = 2p  (1, t), (9) 

where 
p (1, t) = 2 R3 (1) (t) q- R3 ( -  I) (/), (10) 

when it is adhered to the previous nota t ion  I-2, 21]. 

q(l ,t) 

-C 

p( l , t )  

/ 

/ 

/ \ 

B(3, 2t-2, - l )  

B(3, 2t-2, I) 

Fig. 7. The method of fragmentation applied to q(1, t); in the depicted example, t = 3 
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With reference to Chapter 12 of [-2] (see pp. 214-215 therein) one has 

1 (11) R3 (1) (t) = ~Lt  

R3(- 1) (t) = P t -  1 ~- 5 L t -  1 - - -  
25 
2 Z t - 2 '  t > 2. (12) 

Here Lt is used to denote the Keku16 structure count of the rectangle R j (t, 3), viz. 

R3 (t) = Lr (13) 

By means of the recurrence relation [2, 19, 27] 

Lt = 15Lt - i  - 25Lt-2,  t > 2, (14) 

we render Eq. (12) into the form 

1 5 
R3(-O(t )  = ~ L t -  ~ L t - 1 ,  t > 1. (15) 

On inserting (11) and (15) into (10) and subsequently into (9) it is obtained that 

q(1, t) = 3L t - 5 L t - 1 .  t >  1. (16) 

The recurrence relation (14) is equivalent to 

L ,+  1 = 1 5 L t -  25Lt-1,  

On combining (16) and (17) it is finally obtained that 

1 
q(1,t) = ~ L t +  1 

which proves the theorem (7) for s = 1. 

t >  1. (17) 

(18) 

The Case o f  s = 2 

The scheme of fragmentation applied to q (2, t) is shown in Fig. 8. Among the 
smaller fragments L (2) naphthalene, A (3) phenanthrene and two additional single 
chains are encountered. In the two last cases the systems are supplied with algorithm 
numerals [-2, 28]; the sum of the numerals is the K number for the appropriate 
single chain. In the analytical form we have 

where 

Furthermore,  

q (2, t) = q' (2, t) + q" (2, t), 

' 2  = q" = 2 p "  q ( , t) 2p' (2, t), (2, t) (2, t). 

p'  (2, t) = 5 R3 (1~ (t) + 3 R3 ( -  1) (t). 

On inserting from (11) and (15) this yields 

p' (2, t) = 4 Lt - ~ Lt - 1, 
Z 

t > l .  

(19) 

(20) 

(21) 

(22) 
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q(z,t) 

q' (2,t) 

"~ q" (2,t) 

// 

/ 

-< 
B(3, 2t-2, I) 

( 

) ' (2,t)  

L(2) 

B(3, 2t-2, l) 

A(3) 

f 

p"(2,t) 

B(3, 2t-2, l) 

Fig. 8. The method of fragmentation applied to q (2, t); in the depicted example, t = 2 

O n  the o ther  hand  we have 

p "  (2, t) = R3 (1) (t) + 19 R3 (1) (t) + 12 R3 ( -  l)(t) = 16Lt - 30 Lt - 1, t > 0. (23) 

On  inserting f rom (22) and (23) into (20) and subsequent ly  into (19) one obta ins  

(24) q (2, t) = 40 Lt - 75 L ,_  1, t > 1. 

Final ly  by  means  o f  the recurrence relat ions of  the fo rm (14) or  (17), 

q(2,  t ) = 3 L t + l - 5 L t =  17Lt+2. 
3 

(25) 
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Hence the theorem (7) is also proved for s = 2. 

S. J. Cyvin et al. 

The Case o f  s = 3 

The procedure applied to the cases s = 1 and s = 2 above may  be extended to 
higher s values, but  the number  of fragments increases and the procedure becomes 
more  and more  complicated. Still it seems instructive to summarize the application 
to s = 3. Similarly to the preceding case we start with 

q (3, t) = q' (3, t) + q" (3, t). (26) 

Altogether we ended up with the nine fragments as shown in Fig. 9, all of  them 
to be taken twice. The "small"  fragments now amoun t  to benzenoids with up to 
thirteen hexagons. Fig.  9 indicates the K numbers  of  these small fragments,  i.e. 

q' (3,t) 

I ;,3 

so 

2 ( ;  

q"(3,t) .~ 

Fig. 9. Fragments  obtained from the fragmentation of q (3, t); in this figure, t = 2 
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those different f rom B (3, 2 t - 2, 1) and B (3, 2 t - 2, - 1). The net analytical 
results is: 

q(3,t) = 2(13 + 2 + 50 + 10 + 250)R3(0(t) + 2(8 + 1 + 31 + 160)R3 ( -  °(t) 

= 525Lt - 1 000L t_ 1, t > 1. (27) 

Fur thermore ,  
1 

q (3, t) = 40 Lt + 1 - -  75 Lt = 3 Lt + ~ - 5 Lt + 1 --~" 5 Lt + 3" (28) 

General Case 

Now we have proved the theorem (7) for s = 1, 2, 3. Table 1 shows some numerical  
values of  Kekul6 structure counts  for members  of  the r and q classes. The entries 
form a symmetrical  matrix. It is also clear that  all sets of  r and q numbers  (for 
fixed s values) obey the recurrence relation of  the form (14). 

The above procedure  is not  amenable for a generalization to arbitrary s. In 
order to prove our theorem in general we found a different approach  employing 
the repeated application of  the f ragmentat ion method  referred to as chopping  
[2, 10]. 

The me thod  of  chopping  has especially been applied to oblate rectangles 
[-2, 19, 20]. Fig. 10 (left column) exemplifies a chopping o f R  j (4, 3); see in particular 
p. 219 of  Ref. [2]. The four fragments are shown as obtained f rom the chopping 
along the row which is indicated by thick arrows. The r ight-hand column shows 
the fragments obtained f rom the corresponding chopping of  r (2, 2). It is observed 
(see Fig. 10) that  the K numbers  of  each pair of  corresponding fragments exhibit 
the ratio 5:4.  We shall find that  this proper ty  is quite general, thus proving the 
theorem (7). 

The analytical expression corresponding to the chopping  of  an oblate rectangle 
reads [2, 19, 20] 

R.(s  + t) = i R.(-O(s + 1)R.( -0( t ) ,  s + t = m. (29) 
i = 0  

Table 1. Some numerical values of K{r  (s, t)} = r (s, t) and K{q (s, t)} = q (s, t) 

t r (1, t) r (2, t) r (3, t) 

1 40 520 6800 
2 520 6800 89000 
3 6800 89000 1165000 
4 89000 1165000 15250000 
5 1165000 15250000 199625000 

t q (1, t) q (2, t) q (3, t) 

1 10 130 1 700 
2 130 1 700 22250 
3 1 700 22250 291 250 
4 22250 291250 3812500 
5 291250 3812500 49906250 
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/C = 1 2 5 x i 0  

/C = 2 0 0 x 1 5  

K = 2 0 0 x 1 5  

]C = 1 2 5 x i 0  

K = 1 0 0 x l 0  

Z = 1 6 0 x 1 5  

K = 1 6 0 x 1 5  

1< = l O O x l { .  

Fig. 10. Fragments obtained from chopping the rectangle R 3 (4, 3) (left column) and the coronoid 
r (2, 2) (right column) 

It is emphasized that s and t may assume different integer values if only their sum 
is m. This is compatible with the fact that the chopping may be executed along an 
arbitrary three-membered row. Especially for n = 3, the case of  interest here, Eq. 
(29) reduces to 

R3(s + t) = 2R3(°)(s + 1)R3(°)(t) + 2R3(-1)(s  + 1) R3(- i) (t)- (30) 

Suppose that s and t have such values that the corresponding chopping of  r (s, t) 
occurs in the row just above the corona hole. For  this case we find the analytical- 
expression 

r (s + t) = 2/0) (s + 1) R3 (°) (t) + 2 / -  1) (S "-1- 1) R3 ( -  1) (t), (31) 
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where the systems with K = r (°) (s + 1) and K = r (-  1)(S n t- 0 are depicted in Fig. 
11 together with the benzenoids having K = R3 (°) (s + 1) and K = R3 ( -  1) (s + 1). 
The two latter systems (left column of Fig. 11) belong to the well studied auxiliary 
classes of incomplete rectangles (see [2] and references cited above). On comparing 
Eqs. (30) and (31) it is clear that we can prove our theorem if we can demonstrate 
that 

(s + 1). (32) 
4 

r(°)(s + 1) = R3(°)(s @ 1), F ( -1 ) ( s  -~- l )  = ~ R 3  ( -  i) 

We start with a fragmentation of the degenerate coronoid with K = r (°) (s + 1) as 
shown in Fig. 12 and obtain 

r (°) (s + 1) = R 3 (s) + R3 (0) (s) + R3 (2) (s). (33) 

These three fragments are all well known; cf. Chapter 12 of Ref. [2]. Adhering to 
the notation in this monograph we find 

5 
R3(°)(s) = O s - 1  = ~ L s -  I (34) 

and 
5 

R3 (2) (s) : M s : Ls - ~ L~ _ 1, (35) 

while R3 (s) = Ls. The net result, after inserting into (33), becomes 

r(°)(s + 1) = 2Ls. (36) 

K : R3(0) (s+ l )  

K = R3( - / ) ( s+1)  

) 
) 
) 

K : r ( 0 ) ( s + ] )  

x = r(-l)(s+]) 
Fig. 11. Definition of three benzenoid classes and one 
class of degenerate coronoids 
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I< = r ( ° )  ( s + l )  

1 

K = R3(O) (s )  

) 

\ ]< : R3(s ) 

X = R3(2)(8) 

Fig. 12. The method of fragmentation applied to the degenerate coronoid with K = r (°) (s + 1); in 
the depicted example, s = 3 

5 L~ in consistence with (34), we find immediately that the Since R3 (°) (s + 1) = 

first part of Eq. (32) is fulfilled. 
The proof of the second part of Eq. (32) is easier because of the known classes 

of rectangles with modifications at an end; cf. again Chapter 12 of Ref. [-2]. In 
the present case we need 

Since 

R3( -  1)(s q- 1) = P~ = 5L~ - ~ L ~ - 1 .  

r(-1)(s + 1) = Rs = 4L~ - 10L~_ 1, 

we find immediately that also the second part of (32) is fulfilled. 
This completes the proof of Theorem (7). 

(37) 

(38) 

Additional Classes 

We have also considered the degenerate coronoids where the oblate rectangle 
R j (m, 3) has a pyrenic hole in a different position than in q (s, t). A member of this 
class, viz. q' (s, t), is shown in Fig. 13 (right-hand drawing). The numbers of Kekul+ 
structures for this class are readily obtained as a corollary of Theorem (7). Consider 
three edges a, b and e situated in relation to the naphthalenic hole (dotted hexagons) 
as shown in Fig. 14. The number of Kekul6 structures for the oblate rectangle is 
obtained as the sum of three sets, say (a), (b) and (c), with the bonding schemes 
indicated on the figure. Here (a) and (b) lead to q' (s, t) and the mirror image of 
q' (s, t), respectively. These two systems are isomorphic. The scheme (c) leads to 
q (s, t). Consequently, for the K numbers, 

R3(s + t) = 2q' (s,t) + q(s,t). (39) 
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r '(~,t) 

( 
( 
( 
( 
( 
( 
( 

q'(~,t) 

Fig. 13. Definition of the classes r' and q' 

a b 

Fig. 14. Fragmentation schemes for an oblate rectangle; see the 
e text for explanation 

On inserting for q (s, t) from (7) one obtains the result 

2 
q' (s, t) = ~ R3 (s + t). (40) 

Here again the position of the hole is immaterial for the number of Kekul6 struc- 
tures; see Fig. 15 (bottom row). Notice that all the three degenerate coronoid 
systems (in contrast to the systems of Fig. 1 or Fig. 2) are non-isomorphic. 

Finally we have considered the class of coronoids (or degenerate coronoids) 
denoted by r' (s, t) and defined in Fig. 13 (left-hand drawing). An obvious frag- 
mentation scheme, analogous to Eq: (8), yields 

R3(s + t) = r '(s, t)  + q'(s,t) .  (41) 

On inserting from (40) it is readily obtained, 

3 
r" (s, t) = ~ R3 (s + t). (42) 

Fig. 15 (top row) shows three non-isomorphic systems belonging to r' and with 
the hole in different positions, but having the same K number. 



8 4 6  

r '  (1 ,3 )  r l ( 2 , 2 )  r ' ( 2 , 3 )  

S. J. Cyvin et al. 

I< = 5100  I< = 5100  /< = 5100  

q ' ( l , 3 )  q ' ( 2 , 2 )  q' (2 ,3 )  

Z = 3400 J< = 3400 /f = 3400 

Fig. 15. Members of the classes r' and q'; Kekul~ structure counts (K) are indicated 
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